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• A quickly evolving mobile Internet infrastructure. 

 Mobile devices, e.g., smartphones, tablets, laptops, navigation 

devices, glasses 

 Communication networks and users with access 

• Sales 

 Smartphones: 2010: 310 million: 2011: 490 million; 2012:         

650-690 million; 2016: 1+ billion (half of the phone market) 

 PCs (desktop, laptop): 2010: 350 million; 2011: 350 million 

 Tablets: 2011: 66 million 

• Going Mobile is a mega trend. 

 Google went “mobile first” in 2010. 

 Mobile data traffic 2020 = 2010 x 1000. 

 

The Web Is Going Mobile 



Mobile Is Spatial 

• Increasingly sophisticated technologies enable the 

accurate geo-positioning of mobile users. 

 GPS-based technologies 

 Positioning based on Wi-Fi and other communication networks 

 New technologies are underway (e.g., GNSSs and indoor). 



Outline 

• Mobile location-based services 

• Spatial keyword querying 

 Top-k spatial keyword queries 

 Continuous top-k queries 

 Accounting for co-location 

 Collective queries 

• Place ranking using user-generated content 

 GPS records, directions queries 

• Summary and challenges 

 

 

 

(Acknowledgments and references are given at the end: 

 see also the paper in the proceedings.) 

 

 



Transportation-Related Services 

• Spatial pay per use, or metered services 

 E.g., road pricing: payment based on where, when, and how much 

one drives; insurance; parking 

• Eco routing and driving 

 Reduction of GHG emissions, an important element in combating 

global warming (e.g., [reduction-project.eu]) 

• Self-driving vehicles 

 “…looking back and saying how ridiculous it was that humans 

were driving cars.” [Sebastian Thrun, TED2011] 

 Machines don’t make mistakes, human do. 



• Move games from going on behind a computer or phone 

display to occur reality. 

• Virtual objects, seen by the players on their displays, are 

given physical locations that are know to the system. 

• Physical objects, the players, are being tracked by the 

system. 

 

 

• Virtual playgrounds for kids (e.g., [playingmondo.com]) 

• Paintball (e.g., Botfighters 2.0) 

• “Catch the monsters” (e.g., Raygun) 

Location-Based Games 

[IEEE Spectrum 43(1), Jan 2006] 

 



Spatial Web Querying 

• Total web queries 

 Google: 2011 daily average: 4.7 billion 

• Queries with local intent 

 ”cheap pizza” vs. ”pizza recipe” 

 Google: ~20% of desktop queries 

 Bing: 50+% of mobile queries 
 

• Vision: Improve web querying by exploiting accurate user 

and content geo-location 

 Smartphone users issue keyword-based queries 

 The queries concern websites for places 
 

• Balance spatial proximity and textual relevance 



Top-k spatial keyword querying 



• Objects:                       (location, text description)                

• Query:                         (location, keywords, # of objects) 

 

• Ranking function 

 

 

 

 

 Distance: 

 Text relevancy: 

 Probability of generating the keywords in the query from the language 

models of the documents 
 

• Generalizes the kNN query and text retrieval 

10 

kq ,,

Top-k Spatial Keyword Query 

,p

)
max

).(
1)(1(

max

||.,.||
)(

.

P

ptr

D

pq
prank

q

q










||.,.||  pq

).(.  ptrq



Spatial Keyword Query Processing 

• How do we process spatial keyword queries efficiently? 

 

• Proposal 

 Prune both spatially and textually in an integrated fashion 

 Apply indexing to accomplish this 

 

• The IR-tree [Cong et al. 2009 ; Li et al. 2011] 

 Combines the R-tree with inverted files 

 R-tree: good for spatial 

 Inverted files: good for text 
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Object descriptions 

a: (R3, 4), (R4, 1) 

b: (R4, 4) 

c: (R3, 4), (R4, 4) 

d: (R4, 1) 

Inverted file 

a: (p7, 1) 

b: (p6, 4), (p7, 1) 

c: (p6, 3), (p7, 4) 

d: (p7, 1) 

Inverted file 

a: (p5, 4), (p9, 3) 

c: (p5, 4), (p9, 3) 

Inverted file 



Continuous top-k querying 



Continuous Spatial Keyword Queries 

• Objects:                      (location and text description) 

• Query:                        (location, keywords, # of objects) 

• A continuous query where argument 𝜆 changes 

continuously 

 

• Ranking function 
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Continuous Spatial Keyword Queries 

• How can we process such queries efficiently? 

 Server-side computation cost 

 Client-server communication cost 

 

• While the argument changes continuously, the result 

changes only discretely. 

 Do computation only when the result may have changed 

 

• Use safe zones 

 When the user remains within the zone, the result does not 

change. 

 The user requests a new result when about to exit the safe zone. 



Processing Continuous Queries 

• Compute results 

 As before… 

• Compute corresponding safe zones 

 Integrate with result computation 

• Prune objects that do not contribute to the safe zone 

without inspecting them 

 Use the IR-tree 

 Access objects in border-distance order 

 Prune sub-trees 

 Terminate safely when a stopping criterion is met 
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Pruning Objects p+ with Higher Weights 

 

 
 

Pruning Objects with Equal Weights 

 

 

 
 

Pruning Objects with Lower Weights 
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Prestige-based ranking 



Accounting for Co-Location 

• So far, we have considered data objects as independent, 

but they are not. 
 

• It is common that similar places co-locate. 

 Markets with many similar stands 

 Shopping centers, districts 

 China town, little India, little Italy, … 

 Restaurant and bar districts 

 Car dealerships 
 

• How can we capture and take into account the apparent 

benefits of co-location? 

 



• Objects:                       (location, text description)                

• Query:                         (location, keywords, # of objects) 

 

• Ranking function   

 

 

 

 

 

 Distance: 

 Text relevancy: 

 PR score: prestige-based text relevancy (normalized) 
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First Retrieval Approach  
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Prestige-Based Retrieval 
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Prestige-Based Ranking 

• Prestige propagation using a graph G = (V, E, W) 

 Vertices V: spatial web objects 

 Edges E: connect objects that meet constraints 

 Distance threshold: 

 Similarity threshold:                                       (vector space model) 

 Edge weights W:  

• Use Personalized PageRank for ranking [Jeh & Widom, 2003] 
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Prestige-Based Ranking 

Chinese restaurant: 

offering spring rolls 

Chinese 

restaurant 

Shoes 

Shoes & 

Jeans 

Shoes 

Shoes 

Chinese restaurant: 

spring rolls, dumplings 

Jeans  

 too far apart 

 text not relevant 



Experimental Study 

• Local experts are asked to provide query keywords for 

locations and then to evaluate the results of the resulting 

queries. 

• The studies suggest that the approach is able to produce 

better results than is the baseline without score 

propagation. 



Collective queries 







Collective Spatial Keyword Querying 

• So far, the granularity of a result has been a single object 

 

• The spatial aspect offers natural ways of aggregating data 

objects and providing aggregate query results. 

 

• We may want to return sets of objects that collectively 

satisfy a query. 



The Spatial Group Keyword Query 

• Objects:                            (location and text description)                

• Query:                              (location and keywords) 

 

• The result is a group of objects χ satisfying two conditions. 

   

 Cost(Q, χ) is minimized. 

 

•   

 C1(.,.) depends on the distances of the objects in χ to Q. 

 C2(.) characterizes the inter-object distances among objects in χ. 

 α balances the weights of the two components. 
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Spatial Group Query Variants 

• Cost function:  

• Application scenario 

 The user wishes to visit the places one by one while returning to 

the query location in-between. 

 Go to the hotel between the museum visit and the jazz concert 

 NP-complete: proof by reduction from the Weighted Set Cover 

problem 
 

• Cost function:  

• Application scenario 

 Visit places without returning to the query location in-between 

 E.g., go to a movie and then dinner 

 NP-complete: proof from reduction from the 3-SAT problem 
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Place ranking using  

GPS records, directions queries 



GPS-Based Place Ranking I 

• Massive volumes of location samples from moving objects 

are becoming available. 

 GPS location records (oid, x, y, t) 

 Location records based on Wi-Fi and cellular positioning 

• How can we utilize this content for ranking spatial web 

objects? 

 



GPS-Based Place Ranking II 

• Methodology 

 Connect the GPS data with places (semantic locations) 

 Use the GPS data for ranking the places 

 

• …in more detail 

 Step 1: Extract stay points from raw trajectories 

 Step 2: Cluster stay points with existing algorithms 

 Step 3: Reverse geocode the stay points and obtain their                                               

           semantics from business directories 

 Step 4: Refine the clusters to obtain semantic locations 

 Step 5: Ranking 



Step 2: Cluster Stay Points 

• Use existing spatial clustering algorithms 

• K-means, OPTICS 



Step 3: Sampling, Reverse Geocoding, Semantics 

Hobrovej 450, 

9200, 

Denmark 

Bilka Super 

Market 

Randomly 

sample 

points from 

each 

cluster 

 

Use the 

Google 

Maps API 

for reverse 

geocoding 

 

Use a local 
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pages to 

get 
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Step 4: Splitting and Merging 

• Splitting 

 Cluster points in a cluster to obtain sub-clusters 

 Split a cluster if it has sub-clusters with different semantics 

• Merge two clusters with similarity larger than a threshold 

 Similarity: consider user lists, semantics lists, average entry times, 

average stay durations 

Cannot merge 

with others; 

becomes a 

new cluster 

These merge to 

form a new 

cluster 



• Data 

 Collected from device installed in cars in Nordjylland, Denmark 

 119 users in the period 01/01/2007 ~ 31/03/2008 

 Sampling @ 1Hz 

 105,329,114 records 

• Step 1 – stay point extraction 

 76,139 stay points 

• Steps 2-4 – clustering and cluster refinement  

 ~6,500 places 

 Clustering metrics: Purity, entropy, NMI 

• Step 5 – ranking  

 Ranking metrics: Precision@n, MAP, nDCG, Runtime 

Experimental Study 



Ranking 

• Exploit different aspects of the location records 

 The more visits, the more significant 

 The longer the durations of visits, the more significant 

  The more distinct visitors, the more significant 

 The longer the distances traveled to visit, the more significant 
 

 The more “near-by” significant places are, the more significant a 

place is. 

 The more a place is visited by objects that visit significant places, 

the more significant it is.  



Two-Layered Graph 

GUL: User-Location Graph 

GLL: Location-Location Graph 

• GLL : a link represents a trip between two locations 

• GUL: a link represents a visit of a user to a location 
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Results 

Rank-by-visits Rank- 

by-durations 

HITS-

based 

MAP 0.2020 0.2126 0.062 

P@20 0.45 0.45 0.1 

P@50 0.36 0.38 0.12 

nDCG@20 0.8261 0.8324 0.4555 

nDCG@50 0.9678 0.7747 0.4380 

Runtime (ms) 103 107 1536 

U-L L-L Unified ST-Unified 

MAP 0.3748 0.3020 0.4060 0.4274 

P@20 0.75 0.6 0.9 0.95 

P@50 0.68 0.52 0.74 0.76 

nDCG@20 0.9411 0.9031 0.9678 0.9897 

nDCG@50 0.9226 0.8827 0.9402 0.9717 

Runtime (ms) 2209 3540 4234 4318 



Directions Query Based Place Ranking 

• How can we use directions queries for assigning 

significance to places and as a signal for the ranking of 

local search results? 

 

• Directions query: x →y @ t 

 The user asks for directions from x to y at time t. 

 

• Such queries will proliferate as navigation goes online. 
 

• Idea: query x →y @ t is a vote that y is an important place. 



Directions Query Based Place Ranking 

• Exploit different aspects of the queries 
 

• Count-based: The more queries to y @ t, the more 

significant y is (@ t). 
 

• Distance-based: The longer the distances x →y, the more 

the more significant y is. 
 

• Locality-based: The more queries x →y, the more 

significant y is for users close to x. 



Experimental Study 

• Using query logs from Google 
 

• The most obvious competitor is reviews and ratings. 
 

• Similar quality as reviews 

• Better coverage than reviews 

• Better temporal granularity than reviews 

 Examples of finer temporal granularity: after-work bar, weekday 

lunch restaurant 

 Ability to better identify sentiment change 
 

• A way of contending with review spam 

 Few queries and many positive reviews may signal spam 



SEO Attention 

Blog post at www.coconutheadphones.com by Ted Ives 

 

 



SEO for Best Practices 

• Driving directions should 

 be from unique machines and unique users 

 be from a mix of mobile and desktop searches 

 be requested from different locations and distances 

 have a natural distribution of timing that match customer’s search 

patterns and the place’s opening hours 

 be from a mix of search entry paths (address search, 

product/service search)   

• Searches from the location of the business are probably not helpful. 

• If you obtain a lot of reviews without a lot of direction searches, that 

could be flagged as review spam. 

• Don’t make directions too easy for your users. 

 Do not embed a form or a link on your website that generates a 

driving directions query. Any approach like this will probably be 

filtered out. In fact, if you provide such an experience, you’re 

actually hurting your rankings. 

Based on a blog post at www.coconutheadphones.com by Ted Ives 

 

 



Summary and Challenges 



Summary 

• The web is going mobile and has a spatial dimension. 

• Many queries have local intent 

• Spatial keyword queries 

 k nearest neighbor queries 

 Continuous k nearest neighbor queries 

 Using nearby relevant content for place ranking 

 Retrieve a set of objects that collectively best satisfy a query 

• Use of UGC for place ranking 

 GPS records, directions queries 



Challenges 

• Structured queries and Amazon-style and social queries 

 Ample opportunities for much more customization of results 

• Build in feedback mechanisms 

 “Figuring out how to build databases that get better the more 

people use them is actually the secret source of every Web 2.0 

company”                                                        –Tim O’Reilly 

• Tractability versus utility 

 The area is prone to NP completeness 

• Avoid parameter overload 

 Problem vs. solution parameters 

 Hard-to-set, impossible-to-set parameters – relevance decreases 

exponentially with the number of such parameters 

• User evaluation 

 Challenging – particularly for someone who used to study joins. 
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